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Real-world operational use of parallel multi-objective evolutionary algorithms requires
successful searches in constrained wall-clock periods, limited trial-and-error algorithmic
analysis, and scalable use of heterogeneous computing hardware. This study provides a
cross-disciplinary collaborative effort to assess and adapt parallel multi-objective evolu-
tionary algorithms for operational use in satellite constellation design using large dedicated
clusters with heterogeneous processor speeds/architectures. A statistical, metric-based eval-
uation framework is used to demonstrate how time-continuation, asynchronous evolution,
dynamic population sizing, and epsilon dominance archiving can be used to enhance both sim-
ple master–slave parallelization strategies and more complex multiple-population schemes.
Results for a benchmark constellation design coverage problem show that simple master–
slave schemes that exploit time-continuation are often sufficient and potentially superior to
complex multiple-population schemes.

Nomenclature
A epsilon dominance archive
a semimajor axis
e eccentricity
f objective function vector
I inclination
k objective functions index
M mean anomaly
m inequality constraints
N population size
P ∗ Pareto optimal set
PF ∗ Pareto front
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p equality constraints
q discrete points in target grid
r visibility gaps
x decision variable vector
� objective space
� decision space
ω argument of perigee
� right ascension of the ascending node

I. Introduction

THIS study provides a perspective on designing parallel multi-objective evolutionary algorithms (pMOEAs) for
operational use in satellite constellation design, which can differ substantially from the analysis of artificial test

functions [1–3]. The term ‘operational use’ in the context of the aerospace domain requires that pMOEAs should
ideally

a) maximize successful search given a constrained wall-clock period
b) limit trial-and-error analysis for parameterization and algorithmic design for a domain’s multi-objective

problems (MOPs)
c) reduce random seed variability for the run-time dynamics and end-of-run results
d) scale-well for evolving investments in computing where new hardware resources are being added over annual

time-scales.
Addressing these issues is challenging given the dearth of guidance for real-world practitioners seeking to design

and use pMOEAs [1,4].
Using the terminology of Cantu-Paz [5], this study focuses on the master–slave (MS) and multiple-population

(MP) parallelization schemes. Prior pMOEA literature reviews [1,4] show a strong preferential focus on the MP
scheme. Studies focusing on the MP scheme typically criticize the MS scheme’s inability to maintain diverse search
as well as its inability to scale well for large clusters [1,6]. Another factor contributing to the popularity of the
MP scheme is the existing literature’s treatment of “superlinear” speedup [1,5]. For parallel applications speedup
is defined as the ratio of total serial wall-clock time to the parallel wall-clock time for completing an application
[7]. Linear speedup occurs when this ratio is equal to the number of processors used. Superlinear speedup requires
that the ratio of serial to parallel wall-clock times yield a number larger than the parallel processor count. Although
superlinear speedups are theoretically possible for homogeneous and heterogeneous clusters [8], there has been
significant debate and contradictory recommendations in the prior parallel evolutionary computation (EC) literature
as noted in recent reviews [1,5]. Our earlier pMOEA work [2] has shown that when solution quality is reported
carefully in conjunction with MP-based speedup, superlinear speedup is highly dynamic, difficult to sustain, and
challenging to predict a priori.

From a real-world applications perspective, the parallel EC literature appears to predominantly focus on artificially
constructed test problems that often represent problem difficulties that are limited in their value for designing and
assessing pMOEAs for real-world applications [1,3]. Additionally, Van Veldhuizen et al. [1] highlight that the earlier
pMOEA literature’s focus on MP-schemes is counterintuitive given their increased complexity relative to MS-
strategies. These challenges were independently encountered by the authors’ previous work [2,9] and motivated our
collaboration in this study. In the aerospace domain, Ferringer et al. [9] focused on developing MS and MP versions of
the nondominated sorted genetic algorithm-II (NSGA-II) [10] for a benchmark satellite constellation design problem
[11]. The study highlighted that the primary challenge for both MS and MP schemes resulted from the enumerative
evolutionary algorithm (EA) parameter analysis required to attain high quality search on a heterogeneous cluster,
particularly when considering population sizing and migration strategies.

The parameterization challenges faced by Ferringer et al. [9] motivated their collaborative interest in the paral-
lelization work of Tang et al. [2]. Tang et al. [2] evaluated MS and MP versions of an epsilon-dominance archiving
version of NSGA-II (ε-NSGA-II) designed for small, homogeneous LINUX workstation clusters (<16 processors).
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The serial ε-NSGA-II was developed [12,13] to
a) maintain diverse representations of large real-world solution sets
b) enhance search with an auto-adaptive population sizing operator
c) use time-continuation [14] to maintain search for as long as is computationally feasible or sufficient
d) theoretically bound the solution set size and auto-adapted population size based on user specified epsilon

values for each objective [15].
Tang et al. [2] generalized the auto-population sizing and time continuation components of ε-NSGA-II for both

MS and MP implementations. The MS and MP versions of the algorithm were tested on a suite of test problems
consisting of the DTLZ6 test function [16] and two benchmark water resources problems capturing continuous and
discrete decision spaces. As will be discussed in more detail in Sec. II.B, the MS and MP versions of ε-NSGA-
II were developed to minimize user interaction and to take advantage of time continuation (i.e., the injection of
randomly generated solutions to enhance population diversity). Overall the MP version of ε-NSGA-II had superior
performance for DTLZ6 and the less complicated MS version of the algorithm was significantly better for both water
resources applications. Two separate pMOEA failure modes were identified: a) the absolute problem difficulty for
DTLZ6 caused the serial and consequently the MS version of the ε-NSGA-II to have low success rates; and b) the
water resources applications suffered from insufficient evolutionary search periods without parallelization. Tang et
al. [2] used a statistical metrics-based evaluation to show that the MS version of the ε-NSGA-II maintains diverse
search, has predictable speedup for small homogeneous clusters, and was able reliably to solve both water resources
benchmark problems.

This study builds on work by Ferringer et al. [9] and Tang et al. [2] to provide a cross-disciplinary collaborative
effort to comprehensively assess and adapt pMOEAs for the design of satellite constellations using large clusters
with heterogeneous processor speeds and architectures (single, dual, and quad core processors). Van Veldhuizen
et al. [1] has highlighted that there is a present need for real-world practitioners to collaboratively characterize
pMOEA performance across MOP domains while clearly elucidating hardware considerations and algorithmic design
rationale. Additionally, there is also a need to advance the pMOEA literature with real-world applications that report
statistical, metrics-based evaluations of search effectiveness and parallel performance [1,4]. This paper tests the
generality of the findings of Tang et al. [2] and provides detailed recommendations for adapting MS and MP schemes
for larger, heterogeneous clusters with dedicated processing.

Section II of this paper introduces general multi-objective terminology, overviews the MS and MP versions of the
ε-NSGA-II tested in this work, and provides a detailed introduction to the satellite constellation design application.
Section III discusses the computational experiment used to test the parallelization schemes considered in terms of
their parameterizations, the hardware details for The Aerospace Corporation’s Fellowship cluster, and the metrics-
based evaluative framework used to assess pMOEA performance. In Sec. IV comparative results for the original MS
and MP-schemes of Tang et al. [2] designed for a small homogeneous cluster are contrasted to new versions adapted
for larger-scale, heterogeneous parallel computing. Sections V and VI provide a discussion of the implications of
this study and the overall conclusions of this work.

II. Methodology
A. Overview of Multi-objective Optimization Terms

Adapting the pMOEA notation and nomenclature of Van Veldhuizen et al. [1] and assuming minimization, a MOP
can be generally defined using a vector function composed of up to k component functions

Min f (x) =

⎡
⎢⎢⎢⎣

f1(x)

f2(x)
...

fk(x)

⎤
⎥⎥⎥⎦ (1)

s.t.

gi(x) � 0. i = 1, 2, . . . , m (2)

hi(x) = 0. i = 1, 2, . . . , p (3)
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In Eq. 1, the vector x is defined over the n-dimensional potential combination of binary, integer, real, or mixed
decision variables that define the overall decision space ψ . The performance of each design/decision x vector is
evaluated in terms of the k-dimensional �k objective space designated as �. As shown in Eqs. (1) to (3), the goal of
multi-objective optimization is to identify a decision vector x∗ = [

x∗
1 , x∗

2 , . . . , x∗
n

]T
that satisfies m inequalities and

p equality constraints while also attaining optimal values for the k-component objectives.
Unlike single objective optimization where a single optimal solution can be identified, MOPs solved using

pMOEAs generally possess conflicts or tradeoffs among the k-component objectives, which means that optimality
with respect to one objective may actually degrade system performance for one or more of the remaining objectives.
The emerging popularity of MOEAs for solving real-world applications results from their ability to evolve the Pareto
optimal P ∗ ∈ � set, composed of all decision vectors in which any component objective value can only be improved
by reducing the optimality of at least one other objective. When mapped from the decision space to the objective, �f :
� → �, the Pareto optimal set defines the Pareto front PF∗ ∈ � that composes up to a k − 1 dimensional sur-
face representing objective tradeoffs. An applications review as well as more formal mathematical introductions for
MOPs, nondomination sorting, and Pareto optimality can be referenced in [4] and/or [17].

B. Satellite Constellation Design Problem
Several analytical solutions exist that provide the minimum number of satellites and their associated geometry

required to achieve continuous global coverage [18,19]. In practice, a continuous coverage constellation may not be
realizable due to resource limitations or desirable owing to program requirements. If a coverage gap is acceptable,
then a challenging optimization problem emerges wherein a designer would like to minimize the maximum visibility
gap, known as the maximum revisit time (MRT). However, by minimizing the MRT, the average coverage gap,
or average revisit time (ART) will increase because resources used to revisit any one point more frequently than
another are wasted [20]. For a discontinuous coverage constellation, a decision maker seeks out approximations of
the Pareto-optimal set P ∗ that characterize this trade-off.

Before the development of MOEAs, constellation design tradeoffs were typically quantified using enumeration
[21] owing to the nonlinear and discontinuous nature of the coverage objective functions. As constellations grow
beyond one or two satellites, these analyses quickly become infeasible and/or inaccurate owing to computational
resource limitations and the coarse resolution by which the design space is searched. During the previous decade,
several researchers [9,11,21–24] have shown MOEAs to be effective tools for generating approximations of non-
dominated sets in the constellation performance space. Several variations of the revisit time tradeoff reoccur in the
literature, the most recent [9] of which provides the benchmark problem used for this study.

The benchmark problem addresses three-satellite constellation designs that minimize both the MRT and ART in a
region of discrete points (made up of an equal area grid) overlaying the landmass of the conterminous United States.
MRT is calculated using Eq. 4 where, for each discrete point, q, all visibility gaps, r , to that point are stored and the
maximum gap is reported. ART is calculated using Eq. 5 by averaging all gaps to all points.

f1(x) = max{max{gapsi,j (x)}}, i = 1, 2, . . ., q and j = 1, 2, . . ., r (4)

f2(x) =
∑g

i

[∑p

j=1 gapsi,j (x)
]
/r

q
, i = 1, 2, . . ., q and j = 1, 2, . . ., r (5)

The objective functions are evaluated using coverage analysis software [25] developed by TheAerospace Corpora-
tion. For detailed information concerning the Astrodynamics assumptions for this benchmark problem see Ferringer
et al. [9].

A satellite’s orbit is defined by six variables: semimajor axis (a), eccentricity (e), inclination (I ), right ascension of
the ascending node (�), argument of perigee (ω), and mean anomaly (M). For the three-satellite constellation, there
are a total of 18 potential design variables. Searching this entire design space is typically not done in practice. As
any given program will typically define several requirements a priori that constrain the variables. For the benchmark
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problem these 18 potential decision variables are subject to a variety of pre-defined design specifications [9], which
reduce the decision vector to the five variables shown in Eq. 6.

x∗ = [I, �2, M2, �3, M3]T (6)

The decision variables were enumerated via binary encoding to enable exact identification of the PF ∗ such that
an exhaustive search of the decision space could be performed in a reasonable amount of time. The upper and lower
bounds for each variable are shown in Eqs. 7 to 9.

0◦ < I � 180◦ (7)

0◦ < � � 360◦ (8)

0◦ < M � 360◦ (9)

Four bits are used to encode � and M while seven encode I . As the objective functions are most sensitive to the
latter variable. After duplicate configurations are deleted, 3,171,952 unique designs are evaluated resulting in a PF ∗
with 262 solutions. Adding a single bit to � and M would increase the number of unique solutions to 58,920,960
rending exhaustive search to find PF ∗ impractical.

C. Overview of Epsilon-Dominance NSGA-II (ε-NSGA-II)
Previous studies have demonstrated that the ε-NSGA-II is generally superior to the NSGA-II parent algorithm [10]

and compares favorably to other state-of-the-art multi-objective search algorithms for both test functions and a suite
of real-world applications [12,13,26]. The ε-NSGA-II was developed with the intent of solving computationally
intensive real-world applications with large Pareto optimal solution sets P ∗. Operational use of the algorithm in
time-constrained applications requires search to be reliable, effective, and efficient. Reliability and effectiveness can
be discussed jointly in terms of maximizing search quality and repeatability across random seeds given user-defined
computing/time constraints. Efficiency is related to both minimizing the number of evaluations per run as well as the
overall number of runs (i.e., random seed analysis) required to provide approximate results for challenging problems.

In an operational context, the ε-NSGA-II seeks to enhance search reliability, effectiveness, and efficiency using
three primary innovations relative to the parent NSGA-II algorithm

a) epsilon-dominance archiving [15]
b) auto-adaptation of population sizes
c) the use of time continuation [14] to maintain diverse search for as long as is computationally feasible or

sufficient.
Figure 1 provides a schematic overview for the ε-NSGA-II algorithm. The epsilon-dominance archive shown in

Fig. 1 serves several roles in the ε-NSGA-II. The user-specified epsilon grid for the objective space is important for
real-world applications where objectives’ values are often meaningless beyond certain levels of significant precision
due to data uncertainties, numerical error, and design limits. As noted by Laumanns et al. [15] epsilon block non-
domination sorting will promote an even search of the objective space and theoretically limits an MOEA’s archive
to a finite size. Kollat and Reed [27] demonstrated that epsilon-dominance archiving can be used dramatically to
reduce the computational demands of real-world applications with large Pareto optimal solution sets by providing
users with the ability to control the degree of approximation used in search.

Although the ε-NSGA-II maintains the basic representations, operators, and options of the original NSGA-II [10],
Fig. 1 illustrates that epsilon-dominance archiving significantly changes the manner in which search progresses. The
algorithm does not follow the “finite run” defined traditionally as the product of the number of generations and a static
population size. Instead for the ε-NSGA-II, users simply specify either a maximum number of function evaluations
or wall-clock time for search. The algorithm uses a series of “connected runs” that are initiated in run 1 with an
arbitrarily small population (∼12 individuals) that performs preliminary search at minimal computational expense.
Evolution with the preliminary population continues for 250 generations as recommended by Deb et al. [10]. Figure 1
illustrates that after run 1 the epsilon-dominance archive A1 is injected into the initial generation of run 2.
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Fig. 1 Overview of the ε-NSGA-II algorithm adapted from Kollat and Reed [13].

In run 2, the population size is adapted to be 4 × A1 in which 25% of the solutions are archived solutions and
75% are randomly generated using uniform distributions. This 25% injection strategy pre-conditions search using
auto-adapted population sizes that grow linearly with the size of the epsilon-dominance archive. In the long term at
run r , when the epsilon-dominance archive’s size stabilizes the search population size also stabilizes. The injection
of random solutions serves to maintain population diversity and “continue” search for the user-specified maximum
search period. The use of time continuation in ε-NSGA-II is particularly important for real-world MOP’s where search
failures often result from insufficient search because of computational time constraints or resource limits for dedicated
use of computing hardware. Extending Tang et al. [2], this paper seeks to develop parallelization schemes that exploit
ε-NSGA-II’s epsilon dominance archiving, auto-adaptive population sizing, and time continuation effectively on
large, heterogeneous clusters.

D. Parallelization Schemes
There are several design considerations when shifting pMOEAs from small, homogeneous clusters (<16 pro-

cessors) to larger, heterogeneous systems. From a hardware perspective it is important to characterize the degree of
heterogeneity expected [8,28–30]. Bazterra et al. [28] decompose the influence of variable processor speeds, archi-
tectures, and processing memory into evaluation time effects and idle time effects. Evaluation time represents the
wall-clock period for basic pMOEA search operations, of which function evaluations are often the primary compu-
tational concern. Idle time can be defined as the cumulative wall-clock time where processors are being poorly used
owing to message communication, synchronization issues, I/O, and contention from other processes [28]. As noted
in several earlier studies [5–8,28–30], the ratio of evaluation time to idle time asymptotically limits the potential
speedup or scalability of pMOEAs. These issues guided our changes to the original MS and MP versions of the
ε-NSGA-II [3].

In this study, four algorithm variants will be compared
a) a MS implementation designed for small, homogeneous clusters (MS_SC)
b) a MS variant designed for large, heterogeneous clusters (MS_LC)
c) a MP implementation designed for small, homogeneous clusters (MP_SC)
d) a MP variant designed for large, heterogeneous clusters (MP_LC).
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The MS_SC and MP_SC schemes correspond to the initial parallelized versions of the ε-NSGA-II presented by
Tang et al. [2]. The MS_LC and MP_LC configurations of ε-NSGA-II represent new contributions for this study. All
parallel versions of the ε-NSGA-II where developed using the message passing interface (MPI) framework [31].

1. Master Slave Implementation for Small Clusters
The MS_SC version of the ε-NSGA-II represents the simplest possible parallelization strategy for MOEAs, in

which a master processor controls the evolutionary operations of the code and slave processors simply perform
function evaluations. In this parallelization scheme, the master processor initially sends a single individual to each
slave for evaluation. If population members remain after this initial allocation to slaves, the master processor passes
the remaining individuals as slave processors complete their evaluations. After all population members have been
evaluated, the master processor performs the generational evolutionary operations shown in Fig. 1. In the MS_SC as
implemented by Tang et al. [2], the master processor also performs function evaluations when it is not coordinating
other evolutionary operations or processing messages.

The MS_SC strategy is simple to implement but limited in its scalability owing to the challenges posed by
generational synchronization. Synchronization occurs at the end of each generation beginning when the master
sends out the last individual of the population and ends when the final evaluation is completed. Note that the longest
elapsed time will occur when the final individual is sent to the slowest processor. For computationally intensive
applications, the time required to perform the evolutionary operations is very low compared with the generational
synchronization costs. The search dynamics of the ε-NSGA-II exacerbate generational synchronization problems due
to the algorithm’s tendency to favor long run durations (i.e., high generation counts). The generational synchronization
challenges for the MS_SC scheme cause processor idle times to grow quickly with increasing processor counts,
especially for heterogeneous clusters [6,28].

2. Master–Slave Implementation for Large Clusters
The MS_LC version of the ε-NSGA-II uses the algorithm’s variable population size to address synchronization

problems through the use of asynchronous evolution. Generational synchronization is eliminated because the master
processor does not wait for slow function evaluations within any given population before it evolves the next generation.
Instead, these individuals are added to a subsequent child population, in which case their generation counts (or run
numbers) can vary with heterogeneous processing speeds. Even though the child population size varies, it reaches
a steady state where the number of individuals left-behind roughly equals the number of individuals from earlier
generations whose function evaluations have finally completed.

The asynchronous evolution within the MS_LC scheme results in an interesting special case that occurs with
large processor counts. When the initial population size is smaller than the number of available processors, the
idle processors are passed new randomly generated solutions to evaluate. The new random solutions provide load
balance and support the time-continuation of search. An additional performance boost is obtained because the master
does not participate in performing function evaluations. The master is ready to respond as quickly as possible to
a slave’s request for more work and it asynchronously evolves the next generation while the slaves are processing
individuals.

3. Multiple Population Implementation for Small Clusters
The MP_SC version of the ε-NSGA-II represents a far more complex algorithm in terms of its message passing

interface implementation and overall design. Figure 2 shows that each of the W processors has a fully functional
version of the algorithm exploring the full decision space. In general MP-schemes require developers to specify
the size and number of populations (or demes), processor topologies (or connectivity), and migration policies.
Cantu-Paz’s work [5] analyzing MP-schemes highlights the following general conclusions: a) minimal deme sizes
maximize the potential for parallel speed ups; b) problem difficulty heavily influences deme sizing requirements and
consequently the potential for parallel speedups; and c) selection pressure and convergence dynamics are heavily
controlled by migration policies. Migration policies are defined in terms of the frequency of solution exchange, the
rate or number of solutions exchanged, and the strategies governing how selected migrants from sending populations
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Fig. 2 Illustration of multiple population version of ε-NSGA-II designed for small homogeneous clusters adapted
from Tang et al. [2].

will replace members of receiving populations. For example a greedy search would employ frequent migrations of
several individuals with a best replaces worst selection/replacement policy.

Cantu-Paz [5] and Ferringer et al. [9] both highlight that designing and parameterizing MP schemes typically
requires enumerative trial-and-error analysis, which may have to be repeated for MOP formulation changes or new
applications. Both MP versions of the ε-NSGA-II have been designed to minimize trial-and-error analysis and limit
parameterization challenges. The MP_SC version of the ε-NSGA-II exploits global and local epsilon-dominance
archives adaptively to control deme sizes and solution migration with minimal user inputs. The MP_SC scheme
exploits epsilon-dominance archiving when selecting and storing migrant solutions. The epsilon-dominance archives
ensure that large numbers of well distributed solutions can be exchanged without adversely impacting demes’ search
capabilities.

The MP_SC scheme uses dynamic messaging between processors to facilitate asynchronous population sizing and
search dynamics. Following the same basic algorithmic steps illustrated in Fig. 1, the MP_SC version of the ε-NSGA-
II initiates search on W processors, each of which possess a randomly generated deme of 12 members. Run 1 then
proceeds on each processor for 250 generations (the maximum epoch). After completing run 1, worker processors
send requests to the coordinator for a copy of the current global archive. As all processors exchange solutions
via the global archive, the MP version of the ε-NSGA-II has a fully connected topology and an epsilon-dominance-
based selection/replacement policy for migration. The coordinator processor assembles the global epsilon-dominance
archive from all of the local processors’ archives. Each worker is allowed to complete their current generation before
sending their local archives to the coordinator. Once collected, the global archive is then used to adapt deme sizes on
all processors. The auto-adaptation of deme sizes follows the same strategy as the serial version of the ε-NSGA-II:
25% of the new populations are composed of global archive members and 75% of the new individuals are generated
randomly.

After run 2 is initiated on each processor, their individual migration rates and frequencies are determined based
on each deme’s search progress. A deme can request the global archive if a) it fails to improve 10% of its local
epsilon dominance archive members in 10 generations or b) it reaches its maximal search epoch of 250 generations.
Asynchronous search continues until the user-specified maximum wall-clock time is reached. Once the termination
criterion is reached, the coordinator sends termination messages to all of the workers.

4. Multiple Population Implementation for Large Clusters
The MP_LC version of the ε-NSGA-II minimizes processor idle time by enhancing the coordinator processor’s

ability to handle dynamic, asynchronous messaging with larger processor counts and heterogeneous resources. For
small homogeneous clusters, the dual use of a processor as both the coordinator and a worker helps to exploit the
system’s limited computational resources. For larger heterogeneous clusters, the benefits of using the coordinator
processor for search decrease rapidly as interprocessor synchronization becomes more challenging. In the MP_SC
scheme, population sizing requests can cause processors to be idle while waiting for other processors to complete
their current generation. Often the demes on the fastest processors will make the most frequent population sizing
requests. This idle time effect is compounded when the coordinator also has to complete its current generational
search before processing requests.
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In the MP_LC scheme, the coordinator processor is solely dedicated to maintaining the global archive and
facilitating archived-based migrations. Workers send their local archives to the coordinator after every generation to
reduce the synchronization problems that can occur with large numbers of population-sizing requests. These changes
balance synchronization costs vs communication costs. As the computational demands of a real-world application
increase, synchronization issues have a larger impact on message-based parallel performance. By sending local
archives after every generation, the coordinator in the MP_LC scheme actively maintains the global archive and can
share solutions as needed for adapting deme-sizes on a large number of heterogeneous processors.

III. Computational Experiment
The computational experiment used to evaluate the MS_SC, MS_LC, MP_SC, and MP_LC versions of the

ε-NSGA-II represents a cross-disciplinary collaboration to better understand real-world operational use of pMOEAs.
The MS_SC and MP_SC versions of the ε-NSGA-II serve as the control for this computational experiment. These
versions of the algorithm were originally developed for small, homogeneous clusters and tested on applications in
the water resources application domain [2]. This is the first study to test the ε-NSGA-II for satellite constellation
design [9] from the aerospace domain. As noted in Sec. I, this computational experiment has been designed to
test if the alternate parallel versions of the ε-NSGA-II can a) maximize search performance given a constrained
wall-clock period for search, b) limit trial-and-error analysis for parameterization and algorithmic design, c) reduce
random seed variability for the run-time dynamics and end-of-run results, and d) scale well on large, heterogeneous
clusters.

A. Operators, Parameterization, and Random Trials
This study used a binary representation for the satellite constellation design problem to enable enumeration of

the decision space and quantification of the true Pareto optimal solution set. The decision variable resolution (7 bits
for I and 4 bits for � and M) were selected such that an exhaustive search could be completed in a reasonable
amount of time. The inclination I was resolved with a longer bit string because previous work [9] has shown that the
MRT and ART objectives are highly sensitive to this decision variable. Permutation analysis of the decision variables
(after duplicate configurations are removed) resulted in 3,171,952 function evaluations. The full resolution Pareto
optimal set is composed of 262 points. The epsilon-nondominated reference set used to evaluate search performance
in this study was computed using epsilon settings of 0.1 min (or 6 s). As both objective functions attain values that
are the same order of magnitude. These epsilon settings reduced the full resolution 262 solution Pareto optimal set
to 20 epsilon nondominated reference solutions. From an application perspective, the epsilon settings were selected
because objective differences below 6 s are not meaningful. As the dynamical models used during the objective
function evaluations do not model physical reality perfectly. The epsilon-nondominated reference set is used in this
study to comprehensively compare the parallelization schemes for the ε-NSGA-II using a metrics-based evaluation
of run-time dynamics and end-of-run results.

Table 1 provides a summary of the parameters specified for the binary operators used in all algorithm runs. The
operators and parameters used in this study are based on the previous parametric sensitivity analysis and recommen-
dations of Ferringer et al. [9] for the satellite constellation benchmark problem. Prior real-world applications in both

Table 1 Summary of parameters for the MS and MP
schemes

Parameter Setting

Initial population sizes 12
Objective precisions used in reference set 0.1 min, 0.1 min
Epsilons for archiving 0.1 min, 0.1 min
Epsilons for metric calculations 0.1 min, 0.1 min
Problem For two-point crossover 1.0
ProbLem for jump mutation 0.2
Wall-clock time for run termination 12 h
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the water resources and aerospace domains [2,9,11,12] have found that population size and run duration have the
largest impact on search performance for the NSGA-II and the ε-NSGA-II. The four parallel configurations of the
ε-NSGA-II were evaluated using 50 random seed trial runs, each of which terminated after 12 h of wall-clock time.
In the MP-schemes’ trial runs, each deme has its own unique random seed. The overall rationale in this experiment is
that parallelization provides the opportunity to perform more search (i.e., more function evaluations) for increasing
processor counts and a fixed wall-clock time for termination. In both the aerospace and water resources domains,
operational use of pMOEAs would typically require users to provide the best answer possible within constrained
time periods.

B. Fellowship Cluster Configuration
The construction of the Fellowship high-performance computing cluster was primarily motivated by the need to

solve computationally expensive problems for a diverse set of users at The Aerospace Corporation. Figure 3 shows
how the Fellowship cluster has evolved from a cluster of eight dual Intel Pentium III systems.

Currently, the Fellowship cluster contains six servers, 352 dual-processor nodes, a network switch, and a suite of
support software [32]. The servers provide job scheduling, shell access, directory service for user accounts, shared
temporary file storage, network boot services, and backups. Table 2 provides a summary of the Fellowship cluster’s
hardware resources. Both nodes and compute cores share a private nonrouted network and run the Free Berkeley
Software Distribution (BSD) 6.2 operating system, which is derived from the AT&T UNIX Time-Sharing System.
A Cisco Catalyst 6509 switch and Gigabit Ethernet connects all nodes. The Fellowship cluster is a shared corporate
resource that manages job scheduling with the Sun Grid Engine (SGE) batch queuing system.

The SGE scheduler uses a first-in-first-out policy wherein the job submitted first will be attempted to be scheduled
first. The SGE searches for unoccupied nodes and schedules the execution when the profile requirements are satisfied.
If the first job fails to find a suitable free resource then the SGE will attempt to schedule the next job. When the
system is fully loaded, node selection proceeds by using the first available nodes that satisfy the requirements profile
for a given job. When there are multiple suitable combinations of nodes (this occurs when the cluster is not 100%
used) then SGE uses system load information on the machines to select the least loaded nodes for the jobs.

The distribution of the Fellowship cluster’s core count given in Table 2 is used by SGE to schedule jobs on
different processor groups. The processor groups with the highest compute core counts get the largest number of
jobs. For each of the four algorithm variants (MS_SC, MS_LC, MP_SC, MP_LC) a total of ten W -core job (where
W is the number of processors required) were submitted to the SGE. Each of the jobs consisted of five random seed
trials. The overall likelihood that SGE selected members of the processor groups listed in Table 2 for executing the
40 submissions for each W -core job is based on their frequency in the overall distribution of processing cores. Any

Fig. 3 Temporal changes in the Fellowship high-performance cluster’s processor types and core count since its
initiation.
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Table 2 Fellowship node details

Node count Type Speed (GHz) RAM (GB) Core count

64 Intel Xeon 2.4 1 128
64 Operton 244 1.8 2 128
24 Operton 246 2 2 48
68 Operton 246 2 2 136
116 Opteron 270 2 2 464
32 Opteron 275 2.2 2 128

particular assignment of processors by the SGE for any given run will generally match the overall core distribution
for the Fellowship’s resources. Replicating the core count distribution ensures that every processor speed is used and
that processor groups with the high core counts complete the largest number of jobs.

C. Evaluation Framework
The evaluation of the parallelization schemes tested in this study is decomposed into a) intra-paradigm analysis

of the small and large cluster versions of the MS and MP schemes and b) inter-paradigm analysis of the MS and MP
versions of the ε-NSGA-II developed in this study. The SC versions of the ε-NSGA-II are used as the controls in
the intra-paradigm analysis to demonstrate that the LC changes proposed in this study improved their performance
on the Fellowship cluster. As part of the intra-paradigm analysis, the epsilon-performance metric [12,13] is used to
demonstrate run-time dynamics and speedup for MS and MP versions of the ε-NSGA-II. The epsilon-performance
was selected because the trends demonstrated were reflective of other run-time measures and the metric captures
both diversity and convergence concerns for approximation sets.

To support inter-paradigm analysis a tabular summary of end-of-run results are presented for Deb’s diversity and
convergence metrics [33], Kollat and Reed’s epsilon-performance metric [12], and Zitzler et al.’s epsilon indicator
and hypervolume metrics [34,35]. Readers interested in detailed descriptions for these metrics should reference
their original citations. The metrics are calculated from 50-random seed trials for each parallelization scheme tested
across 1, 2, 4, 8, 16, 32, and 64 processor counts. The 64-processor count was considered sufficient to demonstrate
large-scale parallelization given the severe computational demands posed by the 1400 trial runs used in this study
(each of which required 12 h of dedicated wall-clock time) as well as the Fellowship cluster’s queue demands.

For all of the metrics used in this study, the Mann–Whitney test [36] was used to distinguish the statistical sig-
nificance of performance differences and to clarify the algorithmic rankings. Statistical tests were performed when
comparing two separate parallelization schemes and when comparing a single parallelization scheme’s performance
for increasing processor counts. The null hypothesis for the Mann-Whitney tests assumed that the two input dis-
tributions being compared are identical. The p-values attained from the test where used to judge the significance
of the differences in metric distributions and in judging which version of the ε-NSGA-II was superior. Only the
Mann–Whitney results for comparing parallelization schemes will be shown in Sec. IV. As increasing processor
counts always yielded improved performance at greater than the 95% confidence level in all cases.

IV. Results
Section IV.A compares the MS_SC and MS_LC versions of the ε-NSGA-II to demonstrate how time-continuation

and asynchronous evolution can enhance search dynamics and parallel speedups on the Fellowship cluster. Section
IV.B compares the MP_SC and MP_LC schemes’ performances in terms of run-time dynamics, processor idle time,
and speedup dynamics. Section IV.C presents an inter-paradigm analysis that focuses on the end-of-run results for
the MS and MP versions of the ε-NSGA-II.

A. Search Dynamics for Master Slave Variants
The success rates of the MS_SC and MS_LC schemes are shown in Fig. 5 (see later) in the form of cumulative

distribution functions. Within a given wall-clock time, the distribution functions define the percent of 50 trials that
were able to meet or exceed an epsilon performance metric value of 0.8. Figure 4 and Table 3, show that an epsilon-
performance metric threshold value of 0.8 is a very challenging performance goal for the MS_SC and MS_LC
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Fig. 4 Dynamic success rates for the MS_SC and MS_LC versions of the ε-NSGA-II. The cumulative probabilities
are computed as the percentage of 50 trials that were able to attain an ε-performance value of 0.8 or better for a
given wall-clock time and processor count.

schemes. In Fig. 4, the slope or steepness of each distribution provides a visual measure of the run-time variance
across random seed trials. For example, a vertical distribution would signify that all 50 trials have identical run times
(i.e., random seed independence). The serial and two processor results are not shown in Fig. 4. As all of these runs
failed to satisfy the 0.8 performance threshold in 12 h of wall-clock time.

The epsilon-performance metric was selected to illustrate search dynamics because it captures both approximation
set convergence and diversity [12,13].Additionally, the metric is attractive because it has a very intuitive interpretation
where the 0.8 performance threshold requires that 80% of the reference set is found within the user specified epsilons
(see Table 1). Success rate plots for the other metrics showed very similar trends. For increasing processor counts, the
MS_LC scheme has significantly better time efficiency and success rates relative to the MS_SC scheme. Generational
synchronization and processor heterogeneity combine to dramatically reduce the effectiveness of the MS_SC scheme
as the processor count increases. The MS_LC configuration differs from the MS_SC scheme by not using the master
processor for function evaluations and in its use of asynchronous evolution. From an operational use perspective, the
MS_LC scheme exploits increased processor counts to maximize search performance in minimum wall-clock periods.
As an example, shifting MS_LC’s processor count from 32 to 64 processors enables a success rate greater than 95%
in approximately half the wall-clock time. At the 64 processor count, the MS_SC scheme requires approximately
10 h to attain a 95% success rate and its run-time variation is significantly higher.

Figure 5 provides a more detailed analysis of processor idle time for the MS_LC and MS_SC schemes. In the
MS_SC configuration of the ε-NSGA-II, the overall percentage of wall-clock time spent evaluating designs ranges
from nearly 100% for small processor counts to approximately 50% for 64 processors. This result explains why 95%
success rates for the 64-processor MS_SC runs take nearly the same wall-clock time as the 32-processor MS_LC
runs in Fig. 4. A detailed analysis of processor idle times for both MS schemes showed that communication and
processor core heterogeneities (demands, speed, architecture, and so on) contributed on average less than 20 s per
run. For the MS_SC scheme, generational synchronization contributed up to 6 h of processor idle time for increasing
processor counts. The MS_LC scheme has minimal synchronization issues, increasing its potential for effective
speedups [30].

The MS_SC and MS_LC speedup performance in Fig. 6 carefully considers solution quality and speedup jointly.
Earlier studies have highlighted that any parallel EA study reporting speedups must explicitly guarantee that the
wall-clock timings are for the same level of solution quality [1,2,5]. In pMOEA studies assessing solution quality is
challenging. As users want both convergence to the Pareto optimal set as well as a diverse approximation to the full
extent of its tradeoffs. This study follows the approach of Tang et al. [2] in reporting speedup and MOEA metrics
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Table 3 End of run results for all metrics

Conv. (×10−3) Div. Eperf. Eind. Hyper. Ideally
Ideally = 0 Ideally = 1 Ideally = 1 Ideally = 0 maximized

Processor
count Scheme AVG STD AVG STD AVG STD AVG STD AVG STD

4P MS−SC 3.14 2.06 0.856 0.05 0.585∗∗ 0.10 0.541 0.15 3357 5.08
MS−LC 3.87 2.91 0.870 0.06 0.554 0.08 0.532 0.12 3357 4.63
MP−SC 3.00++ 1.46 0.870++ 0.05 0.612++ 0.08 0.527++ 0.13 3358++ 4.25
MP−LC 4.53 2.75 0.895 0.05 0.514 0.09 0.651 0.27 3354 6.50

8P MS−SC 2.27 1.49 0.888 0.04 0.710 0.09 0.367 0.15 3363 3.11
MS−LC 1.65∗∗ 1.30 0.891 0.05 0.746∗∗ 0.08 0.336 0.14 3364∗∗ 3.48
MP−SC 2.29 1.33 0.891 0.05 0.688 0.09 0.432++ 0.15 3362++ 3.58
MP−LC 2.62 1.48 0.870 0.05 0.659 0.08 0.524 0.21 3360 5.39

16P MS−SC 1.38 0.95 0.924 0.03 0.827 0.08 0.259 0.14 3366 2.20
MS−LC 0.77∗∗ 1.11 0.919 0.03 0.861∗∗ 0.07 0.218 0.12 3367∗∗ 2.12
MP−SC 1.96 1.09 0.902 0.04 0.746 0.07 0.339 0.14 3364 2.47
MP−LC 1.63 1.10 0.896 0.05 0.783 0.08 0.351 0.26 3364 5.39

32P MS−SC 0.65 0.63 0.932 0.02 0.923 0.05 0.154 0.09 3368 1.42
MS−LC 0.32∗∗ 0.39 0.926 0.02 0.937 0.05 0.128∗∗ 0.07 3368∗∗ 0.67
MP−SC 1.09 0.76 0.915 0.03 0.863 0.06 0.221 0.13 3367 2.15
MP−LC 0.77++ 0.79 0.926++ 0.03 0.909++ 0.06 0.151++ 0.07 3368++ 1.34

64P MS−SC 0.39 0.46 0.937 0.03 0.960 0.05 0.112 0.06 3368 0.68
MS−LC 0.27∗∗ 0.27 0.931 0.01 0.983∗∗ 0.03 0.093∗∗ 0.03 3368∗∗ 0.46
MP−SC 0.49 0.59 0.925 0.02 0.936 0.05 0.123 0.07 3368 0.91
MP−LC 0.50 0.56 0.926 0.02 0.939 0.06 0.138 0.09 3368 1.38

The averages (AVG) and standard deviations (STD) for the convergence (Conv), diversity (Div), epsilon performance (Eperf), epsilon indicator
(Eind), and hypervolume (Hyper) metrics were computed using 50 random trials. The best overall parallelization scheme at each processor count
is highlighted in underlined bold if Mann–Whitney inter-paradigm tests yield at least 95% confidence levels for a majority of the metrics.
∗∗Superior metric values for MS schemes based on intra-paradigm comparisons that yield at least a 95% confidence level.
++Superior metric values for MP schemes based on intra-paradigm comparisons that yield at least a 95% confidence level.

jointly. Figure 6 uses the epsilon performance metric due to its ability to measure both convergence and diversity. The
speedup results show that for low processor counts the MS_LC version of the ε-NSGA-II is similar and sometimes
inferior to the MS_SC scheme. The MS_LC configuration distinguishes itself in terms of speedup for processor

Fig. 5 Decomposition of the MS schemes’ wall-clock run times into average cumulative processor idle time vs the
average time spent performing function evaluations. The cumulative averages were computed for each processor
count using 50 trial runs of the MS_SC and MS_LC versions of the ε-NSGA-II.
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Fig. 6 Average speedup vs solution quality for the MS_SC and MS_LC versions of the ε-NSGA-II. Speedups were
computed as the ratio of the average serial wall-clock time on the fastest fellowship processors vs the average parallel
wall-clock time required to attain each level of the ε-performance. Speedups are shown only when all 50 trial runs
attained a given value of the ε-performance.

counts greater than 16. Figure 6 clearly demonstrates that both MS schemes exploit wall-clock speedup to increase
search evaluations and approximate a high percentage of reference set solutions. End-of-run parallel efficiencies for
the MS_LC configuration are typically 80% or higher. The epsilon performance speedup results are similar to those
found using the other run-time metrics in Table 3.

B. Search Dynamics for the Multiple Population Variants
Figure 7 shows success rates plots for the MP versions of the ε-NSGA-II. Again, the success rate plots show

time-based cumulative distribution functions that define the percent of 50 trials that were able to meet or exceed an
epsilon performance metric value of 0.8. Figure 7 shows that both MP schemes struggle to attain the performance

Fig. 7 Dynamic success rates for the MP_SC and MP_LC versions of the ε-NSGA-II. The cumulative probabilities
are computed as the percentage of 50 trials that were able to attain an ε-performance value of 0.8 or better for a
given wall-clock time and processor count.
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Fig. 8 Decomposition of the MP schemes’ wall-clock run times into average cumulative processor idle time vs the
average time spent performing function evaluations. The cumulative averages were computed for each processor
count using 50 trial runs of the MP_SC and MP_LC versions of the ε-NSGA-II.

threshold for low processor counts. The MP_SC scheme is superior to the LC implementation for small processor
counts (<16), which makes sense given that Tang et al. [2] designed this version of the ε-NSGA-II for small clusters.
When using small processor counts the MP_SC scheme’s cumulative idle times are small (Fig. 8) and allowing the
coordinator processor to perform search in tandem with worker processors maximizes search progress.

As processor counts increase Figs. 7 and 8 show that the benefits of allowing the coordinator to perform search
rapidly decline while synchronization issues become the dominant control of search success, allowing the MP_LC
scheme to distinguish itself. Results for the MS and MP schemes demonstrate the SC implementations are often
more effective for small processor counts. Generalizing pMOEA performance to scale well on large, heterogeneous
systems requires a concomitant reduction in performance when using small numbers of processors. Comparison
of the success rate plots in Figs. 4 and 7 shows that in general the MP schemes have a much higher variation in
wall-clock time and they require substantially more wall-clock time to achieve high success rates. The 64-processor
runs for MP_LC scheme require approximately twice the wall-clock time as the 64-processor MS_LC runs to attain
a 90% success.

Figure 8 shows that the MP_SC version of the ε-NSGA-II does have slightly higher processor idle times relative to
the MS_SC version of the algorithm. Both the MS_LC and the MP_LC schemes successfully limit processor idle time
and maximize the time spent performing function evaluations as shown in Figs. 5 and 8. The asynchronous, dynamic
archive-based migration strategies used in the MP_LC and MP_SC strategies are quite effective and strongly limit
trial-and-error design analysis. Table 3 shows that the end-of-run metrics for the MP schemes are comparable to the
MS-based results. Figures 7 and 9 show that the MP-schemes’ limited speedups required them to attain high quality
solutions using fewer design evaluations. Although improved search utilizing fewer function evaluations is a major
benefit, redundancy in the MP-schemes search and their reduced speedups combine to limit their effectiveness in terms
of actual wall-clock time, which is the key consideration for parallelization efforts [7].Another interesting observation
in Fig. 8 is that the 32 and 64 processor cases for the MP_SC have similar idle times which is counterintuitive. As has
been noted in earlier literature, successful MP-schemes must balance the benefits of increasing search diversity with
more populations and the communication costs associated with their migration strategies. In the Fig. 8, the 64 proces-
sor instance of the MP_SC code has an overall very large, diverse search that permits less migration (less idle time).

C. Analysis of End-of-Run Results for All Configurations
This section focuses on statistically assessing which parallelization scheme has the best end-of-run effectiveness.

The four parallelization schemes have been characterized using a total of 1400 trial runs (50 random trials per processor
count ×7 processor counts per parallelization scheme ×4 parallelization schemes). For all of the metrics used in
this study, the Mann-Whitney test [36] was used to distinguish the statistical significance of performance differences
and to clarify algorithmic rankings. Table 3 provides the end-of-run mean values and standard deviations for all
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Fig. 9 Average speedup vs solution quality for the MP_SC and MP_LC versions of the ε-NSGA-II. Speedups were
computed as the ratio of the average serial wall-clock time on the fastest fellowship processors vs the average
parallel wall-clock time required to attain each level of the ε-indicator. Speedups are shown only when all 50 trial
runs attained a given value of the ε-performance.

of evaluation metrics used in this study. Results for less than four processors where statistically indistinguishable
and were therefore not included in Table 3. The results shown in Table 3 provide a baseline to judge the dynamic
performance plots presented in Secs. IV.A and IV.B. In Table 3, the ∗∗ superscript designates when either the MS_SC
or MS_LC versions of the ε-NSGA-II attain superior metric values to at least the 95% confidence level. Likewise
for intra-paradigm analysis of the MP schemes, the ++ superscript designates superior metric values to at least the
95% confidence level. The best overall parallelization scheme at each processor count is highlighted in Table 3 using
underlined bold font when Mann–Whitney inter-paradigm tests confirmed superior performance for a majority of
the metrics at the 95% confidence level.

Analysis of the metric moments in Table 3 for increasing processor counts, shows that all four parallelization
strategies were able to exploit the Fellowship cluster to attain consistent improvement of end-of-run metrics. Increas-
ing processor counts always yielded improved performance at greater than a 95% confidence level in all cases. At
the 4 processor count, the MP_SC scheme is significantly superior to the MP_LC configuration as was noted in
the prior results shown in Fig. 7. This again confirms that at small processor counts allowing the MP_SC scheme’s
coordinator processor to perform search in tandem with worker processors maximizes search progress. Table 3 and
Fig. 7 show that although MP_LC scheme minimizes processor idle time, its end-of-run results are not substantially
different from those of the MP_SC scheme until 32 or 64 processors are used. Problem difficulty and the diversity of
the MP schemes search populations appear to play a more important role in their performance than synchronization
bottlenecks and speedup.

For the MS schemes, the asynchronous evolution of the LC implementation dramatically improved speedup and
allowed the algorithm to perform significantly more search in the 12 h wall-clock period. Table 3 shows that the
MS_LC version of the ε-NSGA-II was the best overall performer when using processor counts of 8 or more. The
small variances attained by the MS_LC scheme at high processor counts again highlight its seed independence or
reliability in solving the benchmark aerospace application as was noted in Fig. 4. Table 3 shows that the MS_SC
scheme is the second best performing parallelization scheme overall. The MS_SC scheme is able to attain competitive
to superior metric results relative to both MP schemes for all processor counts.

V. Discussion and Conclusions
This study uses a statistical, metrics-based evaluation framework to demonstrate how time-continuation, asyn-

chronous evolution, dynamic population sizing, and epsilon archiving can be used to dramatically enhance both MS
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and MP versions of the ε-NSGA-II. Comparison of the MS and MP schemes’ speedups highlights that MP-based
search fundamentally changes evolutionary dynamics as has been routinely recognized in the EA literature [1,5].
Although the MP versions of the ε-NSGA-II have been shown to be effective, their speedup and search dynamics
are far more complex than those of the MS schemes. Speedups for both of the MP schemes tested shows a strong
increasing trend with improving metric values for search quality. The increasing trends correspond to increases in
problem difficulty because it is far more challenging to attain 80% of the Pareto optimal set than it is to attain 20%.
This research confirms the results of Tang et al. [2] showing that for extremely challenging problems where a serial
algorithm fails, MP-schemes can dramatically enhance search.

This research was motivated by the question, “Should real-world pMOEA applications consider simple MS
strategies or complex MP strategies?” This study demonstrates that in many instances, the answer to this question
will likely be “simple MS strategies”. The large cluster MS implementation of the ε-NSGA-II has been demonstrated
to be the best overall parallel scheme tested in this study. The MS_LC scheme maintains diverse search using adaptive
population sizing and time-continuation while exploiting asynchronous evolution to minimize processor idle times.
By minimizing processor idle time the MS_LC scheme is highly scalable for large, heterogeneous processor counts,
maintaining nearly linear speedups over the entire wall-clock period of search.

Search failures for the benchmark satellite constellation design application solved in this study were not the result
of severe problem difficulty (which is often the case for studies focused on artificial test functions). If this were the
case, the MS schemes analyzed in this work would not have appreciably reduced search failures. The MS schemes
were able to reduce search failures using longer active search periods facilitated by the ε-NSGA-II’s time-continuation
and sustained speedups. This study contributes a detailed example of how to design scalable, MS strategies for large
heterogeneous clusters that are capable of attaining statistically superior results relative to high quality MP schemes.
Despite the earlier pMOEA literature bias towards MP research, this study highlights that real-world practitioners
should first consider MS schemes that exploit time-continuation to maintain diverse search for as long as is feasible
or necessary. Scalable MS schemes are easy-to-implement, limit trial-and-error parameterization, and can exploit
predictable speedups to enhance the solution of computationally demanding real-world applications.
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